
Abstract. The approximate elimination of the small-
component approach provides ansätze for the relativistic
wave function. The assumed form of the small compo-
nent of the wave function in combination with the Dirac
equation define transformed but exact Dirac equations.
The present derivation yields a family of two-component
relativistic Hamiltonians which can be used as zeroth-
order approximation to the Dirac equation. The opera-
tor difference between the Dirac and the two-component
relativistic Hamiltonians can be used as a perturbation
operator. The first-order perturbation energy corrections
have been obtained from a direct perturbation theory
scheme based on these two-component relativistic
Hamiltonians. At the two-component relativistic level,
the errors of the relativistic correction to the energies are
proportional to a4Z4, whereas for the relativistic energy
corrections including the first-order perturbation theory
contributions, the errors are of the order of a6Z6–a8Z8

depending on the zeroth-order Hamiltonian.

Keywords: Dirac equation – Elimination of the small
component – Relativistic corrections – Transformed
Dirac equations – Exponential regular approximation

1 Introduction

The Dirac equation with four spinor components
demands large computational efforts to solve. Relativ-
istic effects in electronic structure calculations are
therefore often considered by means of approximate
two-component equations. The approximate relativistic
(also called quasi-relativistic) Hamiltonians consist of
the nonrelativistic Hamiltonian augmented with addi-
tional operators describing the dominant relativistic
effects. Two-component relativistic calculations pro-
vide a firm basis for the calculations of higher-order

relativistic corrections by means of perturbation theory
(PT). Several two-component relativistic approxima-
tions have been proposed. The most successful ap-
proaches are the Douglas–Kroll–Hess method [1, 2, 3, 4,
5, 6], the relativistic direct PT [7, 8, 9, 10, 11, 12], the
zeroth-order regular approximation (ZORA) [13, 14, 15,
16, 17, 18, 19, 20, 21, 22], and the normalized elimination
of small components methods [23, 24, 25, 26]. Related
quasi-relativistic schemes based on the elimination of
the small components and other similar nonsingular
two-component relativistic Hamiltonians have also been
proposed [27, 28, 29, 30, 31, 32, 33].

In this work, it is shown how a family of two-com-
ponent relativistic Hamiltonians can conveniently be
derived. The operator difference between the two-com-
ponent relativistic Hamiltonians and the Dirac equation
can be explicitly identified and used in perturbation
expansions. Expressions are derived for a direct PT
scheme based on two-component relativistic Hamilto-
nians. The remaining difference between the variational
energy obtained using two-component relativistic
Hamiltonians and the energy of the Dirac equation is
estimated numerically by applying the direct PT ap-
proach. A general transformed Dirac equation is derived
in Sects. 2 and 3. Two-component relativistic Hamilto-
nians such as the exponential regular approximation
(ERA) and ZORA and other related two-component
relativistic Hamiltonians are presented in Sect. 4 and
some of their advantages and disadvantages are briefly
discussed. Expressions are derived for the direct PT
based on two-component relativistic Hamiltonians in
Sect. 5. The computational methods are described in
Sect. 6 and the results of the calculations on one-electron
atoms are discussed in Sect. 7.

2 The general ansatz

Transformed Dirac equations can be obtained by using
approximate solutions for the small components as
ansätze for the wave function. The ansatz can be
deduced from the lower half of the Dirac equation by
an approximate elimination of the small component.
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The four-component Dirac equation can be written in
atomic units as

V ðrÞ c~rr �~pp
c~rr �~pp V ðrÞ � 2c2

� �
wL

wS

� �
¼ E

1 0
0 1

� �
wL

wS

� �
;

ð1Þ
where wL and wS are the large and small components,
respectively. V ðrÞ is an external potential, c is the speed
of light (c=137:0359895 au), ~pp is the momentum
operator, and ~rr is a vector of the three Pauli spin
matrices. The elimination of the small component yields
an energy-dependent expression (Eq. 2) which relates the
large and the small components:

wS ¼
c

2c2 � V ðrÞ þ E
~rr �~ppwL ð2Þ

Equation (2) or approximations to this expression can be
used as an ansatz for the small component. By inserting
it into the Dirac equation, modified but still exact Dirac
equations are obtained. Analogously, the nonrelativistic
Schrödinger equation can be obtained by applying the
elimination of the small component transformation on
the Lévy–Leblond equation [34, 35]. The four-compo-
nent Lévy–Leblond equation,

V ðrÞ c~rr �~pp
c~rr �~pp �2c2

� �
wL

wS

� �
¼ E

1 0
0 0

� �
wL

wS

� �
; ð3Þ

is a Galilei-invariant equivalent of the Schrödinger
equation for a electron with spin [9, 36, 37] and has, in
principle, the same energy spectrum as the Schrödinger
equation, but it is, as the Dirac equation, not bounded
from below [9]. In Eq. (3), we use the same scaling
convention as used for the Dirac equation. One can see
in Eq. (3) that the large and the small components are
related through the kinetic-energy balance condition
(KEBC)

wS ¼
1

2c
~rr �~ppwL : ð4Þ

The KEBC can also be used as an ansatz for the small
components of the Dirac equation, but the substitution
of Eq. (4) into Eq. (1) results in numerical difficulties at
the nuclei [10, 14, 15]. However, in a finite basis set the
numerical difficulties due to the singularities at the nuclei
can be circumvented [12]. Another method to avoid the
singularities at the nuclei was proposed by van Lenthe
and coworkers [14, 15, 17], who suggested a method that
also includes the interaction potential, V ðrÞ, in the
denominator of the ansatz for the small component.
This ansatz (Eq. 5) was used in the derivation of the
so-called ZORA Hamiltonian.

wS ¼
c

2c2 � V ðrÞ~rr �~ppwL : ð5Þ

For atoms and molecules, the total potential, V ðrÞ, close
to the nucleus is completely dominated by the nuclear–
electron attraction potential, even for many-electron
systems. At the nucleus, the potential is thus propor-
tional to � Z

r . This implies that when the ZORA ansatz
is employed, the small components approach zero at
the nuclei. The singular behaviour encountered in

quasi-relativistic approaches based on the KEBC is
therefore avoided.

A general ansatz for the small component can be
defined as

wS ¼
f ðrÞ
2c

~rr �~ppwL ; ð6Þ

where f ðrÞ has the property of approaching a constant
value of unity at very large distances from the nuclei,
whereas at small distances it becomes zero. For the
KEBC ansatz, f ðrÞ is independent of r. In the ZORA
approach, f ðrÞ approaches unity at large distances when
2c2 � Z

r and becomes zero at the nuclei.
In this work, the ZORA and the KEBC ansätze,

which are already approximations to the energy-depen-
dent elimination of the small-component approach, are
replaced by another but similar expression that relates
the large and the small components. The general ansatz
function should have the same shape as the ZORA
function close to the nucleus. A general function f ðrÞ
that fulfils the desired asymptotic conditions for r! 0
and for r!1 is

f ðrÞ ¼ 1� exp½�ð
2c2r
cZ Þ� ; ð7Þ

where c is the speed of light, Z is the nuclear charge, and
c is an arbitrary constant which can be adjusted. This
ERA ansatz and its first derivative with respect to r are
close to the nucleus reminiscent of those of the ZORA
function. c ¼ 1 yields the same first derivative at
the nucleus as obtained with the ZORA function.
The KEBC, ZORA (IORA) and ERA ansatz functions
are compared in Fig. 1.

3 The transformed Dirac equation

By using Eq. (6) as an ansatz for the small components
and inserting it into the energy expression for the Dirac

Fig. 1. The exponential regular approximation (ERA with c ¼ 1),
the zeroth-order-regular approximation (ZORA), and the kinetic-
energy balance condition (KEBC) ansatz functions for mercury
(Z ¼ 80). The distance R is given in bohrs
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equation (Eq. 1) one obtains an effective transformed
four-component Hamiltonian (ĤHDirac).

ĤHDirac

¼
V ðrÞ 1

2ð~rr �~ppÞ
yf ðrÞð~rr �~ppÞ

1
2ð~rr �~ppÞ

yf ðrÞð~rr �~ppÞ 1
4c2 ð~rr �~ppÞ

y V ðrÞ�2c2
� �

f 2ðrÞð~rr �~ppÞ

 !

ð8Þ
with a general metric (ŜS)

ŜS ¼ 1 0
0 1

4c2 ð~rr �~ppÞ
yf 2ðrÞð~rr �~ppÞ

� �
: ð9Þ

To simplify the expression for the effective Hamiltonian
(Eqs. 8, 9), one can separate out a constant of 1 from
f ðrÞ; f ðrÞ � 1 describes the ansatz difference between the
KEBC and the general ansatz. By using the identity

�r2 ¼ ð~rr �~ppÞyð~rr �~ppÞ ð10Þ
and denoting

T̂T ¼ � 1

2
r2 ; ð11Þ

ÂA ¼ 1

2
ð~rr �~ppÞy f ðrÞ � 1½ �ð~rr �~ppÞ ; ð12Þ

B̂B ¼ 1

2
ð~rr �~ppÞy 1� f 2ðrÞ

� �
ð~rr �~ppÞ ; ð13Þ

X̂X ¼ 1

4c2
ð~rr �~ppÞy f 2ðrÞV ðrÞ

� �
ð~rr �~ppÞ ; ð14Þ

ŶY ¼ 1

4c2
ð~rr �~ppÞyf 2ðrÞð~rr �~ppÞ ¼ 1

2c2
ðT̂T � B̂BÞ ; ð15Þ

and

V̂V ¼ V ðrÞ ð16Þ
the modified but still exact Dirac equation can be written
as

V̂V T̂T þ ÂA
T̂T þ ÂA �T̂T þ B̂Bþ X̂X

� �
/L
/S

� �
¼ E 1̂1 0

0 ŶY

� �
/L

/S

� �
:

ð17Þ

4 Two-component relativistic Hamiltonians

The first approximation one can make in order to
derive two-component relativistic equations is to
assume that the upper (/L) and the lower (/S)
components in Eq. (17) are identical. Denoting them
by /QR, the general two-component relativistic
Hamiltonian becomes

ĤHQR/QR ¼ ðĤHNR þ 2ÂAþ B̂Bþ X̂X Þ/QR

¼ EQRð1̂1þ ŶY Þ/QR ; ð18Þ

where ĤHNR ¼ T̂T þ V̂V is the nonrelativistic Hamiltonian.
The scalar-relativistic and spin–orbit contributions can
be separated by applying the Dirac relation

ð~rr �~AAÞyð~rr �~BBÞ ¼ ~AA �~BBþ i~rr � ð~AA�~BBÞ : ð19Þ

By omitting the spin–orbit term, one-component rela-
tivistic models are obtained [23], but they will not be
considered in this work. Expressions for the calculation
of first-order properties at the quasi-relativistic level of
theory are presented elsewhere [38].

4.1 Exponential regular approximation

The ERA Hamiltonian can be obtained from Eq. (17) by
inserting the exponential function defined in Eq. (7) into
the general ansatz for the small component (Eq. 6). One
important advantage with the ERA is that the exponen-
tial function declines much faster with r than the ZORA
ansatz. Therefore, the ERA ansatz does not cause the
same kind of complications as one experiences when
evaluating the gradients needed in molecular structure
optimizations using the ZORA Hamiltonian [17]; for
typical bond distances the ERA function is equal to 1. In
addition, the ansatz does not contain nuclear attraction
potentials or other terms that introduce gauge depen-
dencies.

4.2 Modified ERA

The two-component relativistic Hamiltonians obtained
using the general ansatz usually have a metric that
include spin–orbit contributions. This can be a undesir-
able situation since in a PT study of spin–orbit effects,
the addition of the spin–orbit coupling requires reor-
thogonalization of the orbitals [39]. However, as seen
in Eq. (15), the relativistic correction term (ŶY ) consists
of two contributions, T̂T and B̂B. B̂B is several orders of
magnitude less significant than T̂T . Furthermore, the B̂B
operator can also be separated into scalar-relativistic
and spin–orbit contributions and only the small spin–
orbit term of the B̂B operator need be neglected; new two-
component relativistic models, the metric of which does
not contain any spin–orbit terms, can be obtained either
by completely omitting the B̂B operator in the metric or
by neglecting only the spin–orbit contribution to the B̂B
operator. In the present metric modified ERA (MERA)
method, the B̂B operator is completely neglected in the
metric.

4.3 Zeroth-order regular approximation

The ZORA Hamiltonian can be derived from the upper
part of the transformed Dirac equation (Eq. 17). By
using the ZORA ansatz for the small component (Eq. 5)
and assuming that the upper and the lower components
are equal, the final ZORA equation for the upper
component becomes

ĤHZORA/ZORA ¼ ðĤHNR þ ÂAÞ/ZORA ¼ EZORA/ZORA :

ð20Þ
The assumption that the upper and the lower compo-
nents were equal can actually be used to define a formal
lower half of the ZORA equation. The lower ZORA
equation
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ÂA/ZORA � ÂA/ZORA;lower ¼ 0 ð21Þ
is never used but Eq. (21) is the simplest equation that
makes the formal four-component ZORA operator
Hermitian and at the same time it defines that the
upper (/ZORA) and the lower (/ZORA;lower) components
are identical. This derivation of the ZORA equation
shows that Eq. (20) is not a completely variational
consequence of the Dirac equation.

4.4 Infinite-order regular approximation

When one instead proceeds as for the general case and
inserts the ZORA ansatz into the Rayleigh quotient, one
sees that two new operator terms, B̂B and X̂X , appear in the
Hamiltonian and in addition one new term ðŶY Þ appe-
ars in the metric. For the ZORA ansatz, the sum of the
ÂA, B̂B and X̂X operators vanishes:

ÂAþ B̂Bþ X̂X ¼ 0̂0 : ð22Þ
Thus, compared to the ZORA method the only new
contribution in the fully variational approach is the ðŶY Þ
correction to the metric. The two-component relativistic
model obtained by using the ZORA ansatz in combina-
tion with a fully variational derivation is the infinite-order
regular approximation (IORA) previously derived by
Sadlej and Snijders [20] and byDyall and Lenthe [21]. The
IORAmethod has recently been implemented byKlopper
et al. [22]. The ZORA model can be obtained from the
IORA equation by omitting the relativistic correction
term to the metric. However, the indirect renormalization
contribution is as significant as the relativistic interaction
operator in the Hamiltonian. This is the reason why
ZORA overestimates the relativistic correction of the 1s
energy of U by more than a factor of 2 [16]. For valence
orbitals the ZORA model works much better.

4.5 Modified IORA

As for the ERA model, a metric modified IORA
(MIORA) model whose metric is independent of the
spin–orbit coupling can be obtained by neglecting the
B̂B term in the metric i.e. by replacing the ŶY operator by
1
2c2 T̂T . Alternatively, another model which does not
contain any spin–orbit terms in the metric can be
obtained by neglecting only the spin–orbit coupling term
of the B̂B operator.

5 Perturbation energy expansions

In order to derive a useful perturbation theory expres-
sion with Eq. (18) as the zeroth-order equation, the
modified Dirac equation (Eq. 17) has to be reformulated
in such a way that the operator difference between Eqs.
(17) and (18) can be identified and used as a perturbation
operator.

In the last step of the derivation of the two-compo-
nent relativistic Hamiltonian (Eq. 18), it was assumed
that the upper (/L) and the lower (/S) components are

identical. This was the only approximation made in that
derivation. Instead of making this assumption, the dif-
ference between the upper and the lower components
can be denoted by DS.

/S ¼ /L þ DS ð23Þ
By inserting Eq. (23) into the modified Dirac equation
(Eq. 17) a new exact expression for the Dirac equation
(Eq. 24) is obtained:

ĤHQR ÂAþ B̂Bþ X̂X

ÂAþ B̂Bþ X̂X �T̂T þ B̂Bþ X̂X

 !
/L

DS

� �

¼ E
1̂1þ ŶY ŶY

ŶY ŶY

� �
/L

DS

� �
: ð24Þ

The two-component relativistic Hamiltonian and the
operators describing the difference between the exact
Dirac Hamiltonian and the two-component relativistic
one are now explicitly separated and the direct PT
method can be applied. In the direct PT approach, the
metric is also affected by the perturbation [9]. Note that
the interaction matrix is block diagonal at the IORA
level of theory, whereas the coupling between the upper
and the lower components still appears in the metric.

The Hamiltonian and the metric of Eq. (24) can be
separated into a zeroth-order part and a perturbation
operator as

ĤH0 ¼ ĤHQR 0
0 0

� �
; ĤH1 ¼ 0 ÂAþ B̂Bþ X̂X

ÂAþ B̂Bþ X̂X �T̂T þ B̂Bþ X̂X

� �

ð25Þ
and

ŜS0 ¼ 1þ ŶY 0
0 0

� �
; ŜS1 ¼ 0 ŶY

ŶY ŶY

� �
: ð26Þ

In the spirit of the direct PT approach [7, 8, 9, 10, 11,
18], Eq. (24) can be expanded in an infinite perturbation
series expansionX

i

ðĤH0 þ ĤH1Þ/ðiÞ ¼
X

i;j

ðŜ0S0 þ Ŝ1S1Þ/ðiÞEðjÞ ; ð27Þ

where /ðiÞ denotes the order-by-order terms of the four-
component function corresponding to the large upper
component /L and to the small lower component DS.
EðjÞ are the perturbation energies of order j. In general,
the order-by-order contributions would be determined
by solving Eq. (27) for each order of the perturbation
expansion; however, the present perturbation expansion
contains additional complications. The ĤH and ŜS matrices
are partitioned into four blocks; the large–large (LL),
the large–small (LS), the small–large (SL), and the
small–small (SS) matrix blocks describe the interaction
of the large and small components. A similar block
structure previously appeared in the PT study of the
extended Koopmans’ theorem [40]. In the zeroth-order
matrices ĤH0 and ŜS0, only the LL block is nonzero,
whereas the perturbation matrices ĤH1 and ŜS1 are nonzero
in the three other matrix blocks. Only the large part of
/ð0Þ, which is denoted /ð0ÞL , can be determined from the
zeroth-order equation (Eq. 18). The small component
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(Dð0ÞS ) must be determined from an expression dedu-
ced from the perturbation expansion. Owing to the
block structure, separate connected equations can be
derived for each order of the small (DðkÞS ) and the
large (/ðkÞL ) components. The small component of the
order n� 1 (Dðn�1ÞS ) can be obtained from the lower half
of the nth-order PT equations as

Dðn�1ÞS ¼ ĤHSS � Eð0ÞŜSSS
� ��1

� �ĤHSL/ðn�1ÞL þ
Xn�1
k¼0

ŜSSLEðkÞ/ðn�k�1Þ
L

 

þ
Xn�1
k¼1

ŜSSSEðkÞDðn�k�1Þ
S

!
: ð28Þ

As seen in Eq. (28), only contributions from the lower
orders are needed. When Dðn�1ÞS has been determined,
the perturbation energy of order n (EðnÞ) can be obtained
by multiplying the nth-order PT equation from the left
by /ð0Þ

y
as

EðnÞ ¼ /ð0Þ
y
ĤH1/

ðn�1Þ �
Xn�1
k¼1

EðkÞ/ð0Þ
y
ŜS0/

ðn�kÞ

 

�
Xn�1
k¼0

EðkÞ/ð0Þ
y
ŜS1/

ðn�k�1Þ

!�
/ð0Þ

y
ŜS0/

ð0Þ
� �

:

ð29Þ
When also higher-order energy corrections are desired,
the next /L term in the PT expansion can be obtained
from the upper half of the PT expansion as

/ðnÞL ¼ ĤHLL � Eð0ÞŜSLL

� ��1
�ĤHLSD

ðn�1Þ
S

�

þ
Xn

k¼1
ŜSLLEðkÞ/ðn�kÞ

L þ
Xn�1
k¼0

ŜSLSEðkÞDðn�k�1Þ
S

!
:

ð30Þ
The small component of order n (DðnÞS ) can then be
determined from Eq. (28) and the algorithm cycle for the
perturbation expansion is closed. The explicit equations
for the first-order correction are

Dð0ÞS ¼ ĤHSS � Eð0ÞŜSSS

� ��1
�ĤHSL/ð0ÞL þ ŜSSLEð0Þ/ð0ÞL

� �
ð31Þ

and

Eð1Þ ¼ /ð0Þ
y

L ĤHLSD
ð0Þ
S þ Dð0Þ

y

S ĤHSL/ð0ÞL þ Dð0Þ
y

S ĤHSSD
ð0Þ
S

�

�Eð0Þ/ð0Þ
y

L ŜSLSD
ð0Þ
S � Eð0ÞDð0Þ

y

S ŜSSL/ð0ÞL

�Eð0ÞDð0Þ
y

S ŜSSSD
ð0Þ
S

��
/ð0Þ

y

L ŜSLL/ð0ÞL

� �
; ð32Þ

where

ĤHLS ¼ ĤHSL ¼ ÂAþ B̂Bþ X̂X ; ĤHSS ¼ �T̂T þ B̂Bþ X̂X ð33Þ

ŜSLL ¼ 1̂1þ ŶY ; ŜSLS ¼ ŜSSL ¼ ŜSSS ¼ ŶY ð34Þ

and the zeroth-order large component is normalized
with ŜSLL as metric

/ð0Þ
y

L ŜSLL/ð0ÞL ¼ 1 : ð35Þ

The first-order perturbation expressions can be simpli-
fied further; the ĤHSS block consists of three contributions
of which �T̂T is of the order a0, whereas the X̂X , B̂B, and ÂA
operators are proportional to a2, where a = c�1 is the
fine-structure constant. An approximate first-order
energy correction can therefore be obtained by neglect-
ing the B̂B and X̂X terms in ĤHSS. Here it is also appropriate
to mention that Dyall and Lenthe [26] have recently
derived and implemented an alternative perturbation
expansion approach for the IORA equation. They
analysed the perturbation-energy expansions for U91þ

and for neutral uranium up to third order.

6 Computational methods

In order to test the accuracy of the equations derived in the pre-
vious sections we used the finite-element method to solve them for
one-electron atoms. The radial range was divided into elements.
The lengths of the elements were distributed exponentially. Each
element is a factor of 1.3 longer than the previous one starting at
the nucleus. In each element a linear grid is used. Lagrange inter-
polation polynomials of fourth order were used as local basis
functions (element functions). This corresponds to local expansions
of fourth-order polynomials. The nonrelativistic integrals were
calculated analytically, whereas the relativistic correction integrals
were obtained by numerical Gauss integration. The practical
infinity was chosen to be at R1 ¼ 100

Z , where Z is the nuclear charge.
The calculations were performed using a grid consisting of 80 ele-
ments containing five element functions each. The point nucleus
model was adopted in all calculations.

7 Applications

7.1 Infinite-order regular approximation

The equations derived in Sects. 2, 3, 4, and 5 were
implemented as described in Sect. 6 and the methods
were applied on one-electron atoms. The energies for the
lowest 1s states obtained using the IORA Hamiltonian
[26] are given in Table 1. For the lightest elements (up to
Ca19þ), the IORA and the Dirac energies differ by less
than a few mhartrees, whereas for U91þ the IORA
energy is about 59 hartrees (in absolute value) larger
than the Dirac value. The difference between the IORA
and Dirac energies increases with the sixth power in Z,
indicating that the IORA model is correct up to a2Z4.

7.2 Exponential regular approximation

The energies obtained using the ERA Hamiltonian are
given in Table 2. The ERA model has one parameter
that can be freely adjusted, namely the scaling parameter
c in the denominator of the exponent in Eq. (7). The
energies presented in Table 2 were obtained with the
scaling factor c ¼ 1. The errors in the energies obtained
with the ERA Hamiltonian are for the lighter systems
about 5 times larger than the errors in the IORA
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energies. For the heavier atoms, the errors in the ERA
energies are of the same size as obtained with the IORA
model. For elements heavier than Fm99þ the ERA
energies agree better with Dirac values than the IORA
energies do.

The difference between the energies obtained at the
ERA level and the Dirac energies (DE) are plotted in
Fig. 2 as a function of the nuclear charge. The same
graph for the other models is also shown in the figure. It
can clearly be seen that for smaller Z values both the
ERA and the IORA models scale with the same power
of aZ, whereas for the heavier elements the slope of the
ERA curve is significantly smaller than Z6.

7.3 MIORA and MERA

The IORA and the ERA Hamiltonians both contain
spin–orbit-dependent terms in the Hamiltonian and in
the metric. The simplest approximation to the IORA
and ERA models that does not have any spin-dependent
terms in the metric is obtained by separating the ŶY
operator into one term that is proportional to the
nonrelativistic kinetic-energy operator T̂T , which is spin-
independent, and into another less significant term, B̂B,
that contains the spin–orbit coupling contributions in
Eq. (15). The B̂B operator in the metric can then be
ignored. These equations are denoted MIORA-1 and
MERA-1 models. In the MIORA-2 and MERA-2
models only the spin–orbit contribution to the B̂B term
in the metric is omitted. For the systems studied, the

MERA-2 and IORA-2 Hamiltonians yield the ERA and
IORA energies, respectively. The MIORA and MERA
models are good starting points for the derivation of
scalar-relativistic Hamiltonians that provide an easy way
of considering spin–orbit effects by applying PT or
configuration interaction. By omitting the spin–orbit
contribution to the 2ÂAþ B̂Bþ X̂X operator of the ERA
model one obtains a one-component scalar-relativistic
ERA model (SERA). The SERA Hamiltonian is an

Table 1. The quasi-relativistic
total energies (hartrees) for the
lowest 1s state of one-electron
atoms calculated at the infinite-
order regular approximation
(IORA) level and the corre-
sponding first-order perturba-
tion-energy correction, E(PT).
The IORA and IORA+PT
energies are compared to the
corresponding Dirac values

a E(Dirac)-E(IORA)
b E(Dirac)-E(IORA+PT)

Atom E(IORA) Differencea E(PT) Differenceb

H �0:500006657 0.0000000 0.0000000 0.0000000
Ne9þ �50:0668306 0.0000886 0.0000886 �3:4� 10�8

Ca19þ �201:0821962 0.0056728 0.0056734 �0:0000006
Zn29þ �455:5895942 0.0646871 0.0471462 �0:0000275
Zr39þ �818:1719645 0.3644667 0.3649423 �0:0004756
Sn49þ �1296:0244180 1.3982621 1.4026258 �0:0043637
Nd59þ �1899:9000166 4.2176607 4.2444008 �0:0267401
Yb69þ �2645:6585812 10.8120163 10.9366048 �0:1245885
Hg79þ �3556:9010448 24.7088941 25.1870033 �0:4781092
Th89þ �4669:7676396 52.0099853 53.6059752 �1:5959899
U91þ �4921:0993398 59.9013167 61.9063207 �2:0050040
Fm99þ �6042:5852735 103.3898891 108.2216352 �4:8317462
118117þ �9563:0237251 332.3964009 363.7824657 �31:3860647

Table 2. The quasi-relativistic
total energies (hartrees) for the
lowest 1s state of one-electron
atoms calculated at the ex-
ponental regular approximation
(ERA) level and the corre-
sponding first-order perturba-
tion-energy correction, E(PT).
The ERA and ERA+PT
energies are compared to the
corresponding Dirac values

a E(Dirac)-E(IORA)
b E(Dirac)-E(IORA+PT)

Atom E(ERA) Differencea E(PT) Differenceb

H �0:500006657 0.0000000 0.0000000 0.0000000
Ne9þ �50:0671935 0.0004515 0.0004531 �0:0000016
Ca19þ �201:1057376 0.0292142 0.0295874 �0:0003732
Zn29þ �455:8511025 0.3261954 0.3345066 �0:0083112
Zr39þ �819:5330302 1.7255324 1.7934351 �0:0679027
Sn49þ �1300:5431403 5.9169844 6.2224791 �0:3054946
Nd59þ �1910:7706194 15.0882635 15.9806405 �0:8923770
Yb69þ �2665:5618257 30.7152608 32.5328847 �1:8176239
Hg79þ �3584:1418966 51.9497459 54.5862842 �2:6365383
Th89þ �4692:3865829 74.6289286 77.2688131 �2:6398845
U91þ �4939:9511031 78.7530800 81.2539373 �2:5008573
Fm99þ �6030:9316491 91.7362647 93.2648117 �1:5285470
118117þ �9315:6475896 85.0202654 84.2284885 þ0:7917770

Fig. 2. A logarithmic plot of the difference between the quasi-
relativistic and the corresponding Dirac energies for the one-
electron 1s1=2 state as a function of nuclear charge
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economical one-component model that could replace the
popular scalar ZORA approach.

The one-electron energies obtained using the
MIORA-1 and MERA-1 methods are given in Table 3.
The scaling factor c ¼ 1 was employed. In Fig. 2, the
overall slope for the MIORA-1 and MERA-1 curves is
6; the MIORA-1 and the MERA-1 models are also
correct up to a2Z4, but with a larger prefactor than for
the IORA and ERA models. Note that the error of the
MERA-1 model changes sign at about Hg79þ, which is
seen in Fig. 2 as a dip in the MERA-1 curve. For one-
electron atoms, c can be adjusted until the MERA-1 and
the Dirac energies agree. Since these c values are not
necessarily appropriate for many-electron systems, they
are not discussed further here.

7.4. IORA+PT and ERA+PT

As shown in Sect. 5, two-component relativistic Ham-
iltonians such as IORA and ERA can be used as a
zeroth-order approximation to the Dirac Hamiltonian.
The operator difference between the two-component and
the fully relativistic equations can be used as a pertur-
bation operator and the corresponding energy difference
can be considered by using a direct PT approach. The
first-order PT corrections to the quasi-relativistic ener-
gies obtained with the IORA and the ERA Hamiltonian
as the zeroth-order approximation to the Dirac equation
are given in Table 1 and 2, respectively.

For the heaviest systems, the deviations between the
Dirac energies and the total first-order PT energies are
reduced by more than 1 order of magnitude, whereas for
the lighter systems, the improvement due to the pertur-
bation treatment is even a few of orders of magnitude.
The difference between the total energies obtained at the
IORA+PT level and the fully relativistic Dirac energies
(DE) are plotted in Fig. 3 as a function of the nuclear
charge. The same graph for the ERA+PT calculations is
also shown.

As seen in Fig. 3, on a logarithmic scale the IOR-
A+PT energy curve is linear with a slope of 10 implying
that the IORA+PT energies are correct to order a6Z8.
The corresponding curve for the ERA+PT energies is
linear for small Z values but for heavier systems it is
bent. The slope of the linear part is about 8; for lighter

elements, the ERA+PT energies seems to be accurate up
to the order a4Z6, whereas the discrepancy between the
ERA+PT and the Dirac energies for the heavier systems
is smaller than one would expect from an extrapolation
of the a4Z6 line.

7.5. Optimized ERA

The ansatz used in the construction of the ERA
Hamiltonian has one adjustable parameter, namely the
scaling factor c in the denominator of the exponent of
the ansatz function in Eq. (7). Since c ¼ 1 yields at the
nucleus the same first derivative of the ansatz function
with respect to r as with the ZORA ansatz, this value for
c was used in the calculations presented earlier; however,
c can be adjusted rather freely. Optimal c values can be
obtained by minimizing the quasi-relativistic energy with
respect to c. Note that c is not very significant for the
overall wave function. It mainly defines the relation
between the large and the small components at the
vicinity of the nucleus, whereas at larger distances
from the nucleus it affects the wave function only
indirectly.

Table 3. The quasi-relativistic
total energies (hartrees) for the
lowest 1s state of one-electron
atoms calculated at the metric
modified IORA (MIORA-1)
and metric modified ERA
(MERA-1) levels. The energies
are compared to the Dirac
energies

a E(Dirac)-E(MIORA-1)
b E(Dirac)-E(MERA-1)

Atom E(MIORA-1) Differencea E(MERA-1) Differenceb

H �0:500006657 0:0000000 �0:500006657 0:0000000
Ne9þ �50:0664742 �0:0002678 �50:0671935 0:0004514
Ca19þ �201:0590174 �0:0175059 �201:1056833 0:0291599
Zn29þ �455:3182803 �0:2066268 �455:8479331 0:3230260
Zr39þ �816:5873467 �1:2201512 �819:4761585 1:6686607
Sn49þ �1289:6686470 �4:9575089 �1300:0174972 5:3913413
Nd59þ �1879:7295502 �15:9528057 �1907:6166612 11:9343053
Yb69þ �2591:1000119 �43:7465530 �2651:7135077 16:8669429
Hg79þ �3425:5769377 �106:6152130 �3536:3559220 4:1637713
Th89þ �4380:6590672 �237:0985871 �4556:0924249 �61:6652294
U91þ �4585:5550537 �275:6429694 �4775:0432884 �86:1547347
Fm99þ �5448:5425656 �490:6528187 �5695:5992208 �243:5961635
118117þ �7612:6000344 �1618:0272897 �7979:3257421 �1251:3015821

Fig. 3. The difference between the Dirac energy and the ERA+PT
and IORA+PT energies, respectively, calculated as a function of
nuclear charge
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The accuracy of the quasi-relativistic energies and the
first-order perturbation-energy corrections were studied
by performing ERA and ERA+PT calculations on the
two lowest s1=2 states of U91þ using a few values for c.
The results of the ERA and ERA+PT calculations are
summarized in Figs. 4 and 5, respectively. The difference

between the ERA energy and the Dirac energy decreases
with increasing c. The smallest value for the energy
difference was obtained with c ¼ 1:40. An analogous
study at the ERA+PT level shows a similar trend;
however, at the ERA+PT level the optimal c value is
1.24.

A similar study for the first excited s state shows that
at the ERA level, the optimal c value of 1.7 provides a
quasi-relativistic energy that is about a factor of 4 closer
to the Dirac energy than when the default c value of 1.0
is used. The optimal c value obtained in the ERA+PT
calculations on the 2s1=2 state of U91þ is about 1.5 and
for this c value the total ERA+PT energy is a factor of
15 closer to the exact Dirac energy than obtained with
c ¼ 1. The results of the calculations on the 2s1=2 state of
U91þ are summarized in Figs. 4 and 5. This study on
U91þ shows that the optimal c value seems to be always
larger than 1. The optimal c is also state- and model-
dependent. At the ERA level, the optimal c value is
significantly larger than the c value that yields the best
ERA+PT energy. The reason for this is probably error
compensation which is more significant for the less
accurate ERA model than for the ERA+PT model. The
ERA+PT calculations on U91þ with the optimal c value
almost reproduce the Dirac energy.

The energies of the ERA and ERA+PT calculations
on the four lowest s1=2 states of U91þ are compared to
the exact results in Table 4. In the calculations, c values
of 1.0 and 1.24 were employed. The errors of the ERA
energies were reduced by about a factor of 2 when
c ¼ 1:24 was used. In the ERA+PT calculations, the
improvements obtained by using the slightly larger c
value varied between a factor of 4 and a factor of 40 for
the different states. Interestingly, larger improvements of
the energies were obtained for the lower states with
larger errors in the ERA energies. When one uses a
c value of 1.24, the absolute deviation between the
ERA+PT energy and the exact results is of the same
order of magnitude for all the states considered in
Table 4.

The optimal c values for the 1s1=2 states of one-elec-
tron atoms calculated at the ERA and the ERA+PT
levels are shown in Fig. 6. As seen in Fig. 6, the optimal c
value for the ERA calculations are for all Z values larger
than the c value that provides the best ERA+PT
energies. At the ERA level, c increases approximately
quadratically with decreasing nuclear charge. At the
ERA+PT level, the optimal c increases linearly with
decreasing nuclear charge. For large Z values, c
approaches 1.

Fig. 4. The difference between the ERA and the Dirac energies for
the 1s1=2 and the 2s1=2 states of U91þ as a function of the scaling
factor c

Fig. 5. The difference between the ERA+PT and the Dirac
energies for the 1s1=2 and the 2s1=2 states of U91þ as a function of
the scaling factor c

Table 4. The ERA energies
(hartrees) of the four lowest s
states of U91þ calculated using
the scaling factors c of 1.0 and
1.24, respectively and the corre-
sponding first-order perturba-
tion-energy correction. The
energies are compared to the
exact Dirac energies

a E(Dirac)-E(ERA)
b E(Dirac)-E(ERA+PT)

c State E(ERA) Differencea E(PT) Differenceb

1.00 1s �4939:9511031 78.7530800 81.2539373 �2:5008573
1.00 2s �1308:0147730 50.6188827 55.9291894 �5:3103067
1.00 3s �557:4653759 18.3720341 20.4902966 �2:1182625
1.00 4s �303:3423060 8.0844619 9.0074174 �0:9229554
1.24 1s �4886:8203383 25.6223152 25.6854565 �0:0631412
1.24 2s �1283:5268558 26.1309655 27.0308256 �0:8998601
1.24 3s �549:0364689 9.9431271 10.3443729 �0:4012458
1.24 4s �299:7122445 4.4544004 4.6329240 �0:1785236
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In this study, only one-electron states have been
considered. It is of course also possible to find optimal c
values for many-electron atoms. The optimal c value for
the atom would then be a compromise between the
optimal c values for each one-electron state. The optimal
atomic c values define a unique two-component opti-
mized ERA model which could also be used in molecular
calculations.

8 Summary

In this work, a method to derive general two-component
relativistic Hamiltonians has been presented. The Dirac
equation has been reformulated in such a way that two-
component relativistic Hamiltonians can be identified as
the zeroth-order approximation to the Dirac Hamilto-
nian. The operator difference between the two-compo-
nent relativistic and the Dirac Hamiltonians can be
treated as the perturbation operator in a direct PT
scheme. The present approach is a straightforward
method to determine the first-order relativistic pertur-
bation-energy corrections to quasi-relativistic energies.

A couple of new two-component relativistic Hamil-
tonians have been proposed. The calculations show that
the energies obtained with the present two-component
relativistic Hamiltonians are in fairly good agreement
with the corresponding Dirac energies. The discrepancy
between the quasi-relativistic and the Dirac energies
scales with a4Z6, where Z is the nuclear charge and a is
the fine-structure constant.

The energy corrections obtained from first-order PT
cover even for the heaviest one-electron atoms more
than 90% of the difference between the energies ob-
tained at the quasi-relativistic and the Dirac levels. The
discrepancy between the Dirac energies and the energies
of the two-component relativistic calculations corrected
with the first-order perturbation energies scales for small

Z values with a6Z8–a8Z10, depending on the zeroth-
order Hamiltonian. By introducing optimized values for
the scaling factor c of the ERA model, significantly
improved quasi-relativistic energies can be obtained.
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